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LINEAR THEORY OF IMPLTLSIVE VELOCITY CORRECTIONS 

FOR SPACE MISSION GUIDANCE 

By Luigi S. Cicolani 
Ames Research Center 

One aspect of midcourse guidance i s  the determination of the guidance 
correction, usual ly  specif ied by an equation t h a t  gives the  required veloci ty  
change as a function of the  current state of the  vehicle.  With the  assumptions 
t h a t  impulsive veloci ty  correct ions are made and t h a t  t h e  equations of motion 
can be l inear ized about a reference o rb i t ,  the  required midcourse veloci ty  
correction will be a l i n e a r  function of the  deviation of t he  vehicle state 
from the  reference s t a t e .  

Such l inear  guidance equations form a pa r t i cu la r ly  simple c lass  which i s  
analyzed i n  t h i s  paper from the  viewpoints of l i nea r  vector spaces and the 
theory of l i nea r  equations. Existence conditions and t w o  formulations of  the  
guidance equation from the mission constraints  are given. Properties of form 
and time -invariant propert ies  of the guidance equations and re la t ions  among 
the  bas ic  notions of the  theory a re  a l s o  discussed. Final ly ,  a number of 
examples f r o m  the recent l i terature are  examined. 

INTRODUCTION 

A mission must s a t i s f y  ce r t a in  objectives which, i n  turn,  specify con­
s t r a i n t s  on the  vehicle 's  o r b i t .  The launch system attempts t o  place the  
vehicle on a reference o r b i t  t h a t  s a t i s f i e s  the  constraints ,  but  misses t h i s  
objective s l i gh t ly .  For lunar  and interplanetary missions the in jec t ion  e r rors  
w i l l  usual ly  be unacceptable f o r  mission success and a midcourse navigation 
and guidance system and one or more midcourse corrections will be required. 
The navigation system estimates the  vehicle s t a t e  from observations of stars, 
planets,  or the  vehicle, and the  vehicle guidance system then attempts t o  cor­
r e c t  t o  a sa t i s fac tory  o r b i t  (one which meets t h e  mission constraints  on 
o r b i t a l  motion) by means of a change of velocity.  Because the  ac tua l  s t a t e  i s  
imperfectly known and the correction imperfectly made, the  vehicle i s  not yet  
on a sa t i s fac tory  o r b i t  and f'urther observations and corrections may be 
necessary . 

Only one element of t h e  midcourse guidance and navigation process w i l l  be 
examined here - the  equation which gives the  required ve loc i ty  correction as a 
function of  current veh ic l e ' s t a t e .  

I n  the study of midcourse guidance f o r  the lunar and interplanetary 
missions, it has frequently been adequate t o  assume t h a t  veloci ty  corrections 



are  impulsive and departures from a reference o r b i t  are suf f ic ien t ly  small t o  
allow the  equations of motion t o  be l inear ized about the reference o rb i t .  The 
guidance equations t h a t  r e s u l t  from these assumptions give the  ve loc i ty  correc­
t i o n  as a l i nea r  function of the  deviation of t he  current vehicle state from 
the  reference state. Guidance equations of this type will be termed l inea r  
impulsive guidance l a w s  herein. A number of such guidance l a w s  designed t o  
s a t i s f y  various mission constraints  have been reported (e.g. ,  r e f s .  1 -5) .  All 
of these examples of guidance l a w s  show some s imi l a r i t y  of form, suggesting 
tha t  they are mathematically re la ted.  It i s  the  object of t h i s  paper t o  de te r ­
mine the general propert ies  and log ica l  s t ruc ture  of the  c lass  of l i n e a r  
impulsive guidance l a w s .  

The analysis  adopts t w o  approaches; i n  the  f i rs t  we consider the  state 
space. The midcourse veloci ty  correction i s  an attempt t o  correct some a r b i ­
t r a r y  s t a t e  t o  a sa t i s f ac to ry  s t a t e ,  t h a t  is ,  t o  a state which defines an o r b i t  
t ha t  s a t i s f i e s  the  mission constraints .  Linear impulsive guidance l a w s  occur 
when the  sa t i s f ac to ry  s t a t e s  are, col lect ively,  ce r t a in  types of subspaces of 
the state space, and the  guidance l a w  can be formulated from any basis of the  
sa t i s fac tory  states. Further, such guidance l a w s  have properties of fo rm which 
depend on the  dimension of the  s e t  of s a t i s f ac to ry  states and are  invariant  
with time. The s e t  of sa t i s fac tory  s t a t e s  i s ,  i n  turn,  defined by the  mission 
constraints  on o r b i t a l  motion, and a bas is  of the  sa t i s fac tory  states can be 
generated by a su f f i c i en t  number of der ivat ives  of the  s t a t e ,  evaluated on the  
reference o rb i t s ,  with respect t o  appropriate o r b i t a l  parameters. 

The second approach u t i l i z e s  the  mission constraints  d i rec t ly ;  from the 
l inear ized r e l a t ion  between the  constraint  parameters and the  current state, 
the general solut ion f o r  the veloci ty  correction which satisfies the  con­
s t r a i n t s  can be obtained. This construction gives the  guidance l a w  from deriv­
a t ives  of t he  constraint  parameters with respect t o  the  Cartesian components 
of the  current vehicle s t a t e .  

Finally,  the  theory i s  i l l u s t r a t e d  with an examination of the recent 
l i t e r a t u r e  on lunar and interplanetary midcourse guidance. 

The f i rs t  construction i s  carr ied out from the viewpoint of l i nea r  vector 
spaces, but only elementary pr inciples  from t h a t  subject are used ( c f .  r e f .  6 ) ,  
A convenient notion i n  the  second approach i s  the pseudo-inverse of a matrix 
( r e f s .  7, 8 ) .  The two constructions give equivalent solutions f o r  the guidance 
l a w s ,  although the  application of the second construction will usual ly  require 
less labor. 

SYMBOLS 

A b )  various matrices 

A ( t E , t l )  t r ans i t i on  matrix, r e l a t ing  the  deviation state a t  t 2  t o  the  
deviation a t  t1 
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d 


-
r 

S 

t 

submatrices of  A ( t 2 , t l ) ,  j = 1, - 4 


azimuth angle 


various matrices 


matrices r e l a t i n g  states i n  s(t2) t o  states i n  S ( t 1 )  

decl inat ion angle 

matrix r e l a t i n g  state deviations t o  deviations i n  o r b i t a l  
parameters 

guidance l a w  matrix and i t s  submatrices 

iden t i ty  matrix 

state space; set  of  a l l  deviations of pos i t ion  and ve loc i ty  
from a reference pos i t ion  and ve loc i ty  a t  t i m e ,  t 

u n i t  vector normal t o  o r b i t a l  plane 

m-tuple of independent o r b i t a l  parameters (p,, . . ., Pm) 

r i g h t  ascension 

s e t  of a l l  pos i t ion  deviations occupied by the sa t i s f ac to ry  
o r b i t s  a t  t i m e ,  t 

posi t ion vector 

s e t  of s a t i s f ac to ry  deviation s t a t e s  

element of S ( t )  

t i m e  

reference arrival time 

u n i t  vector 

matrices appearing i n  construction of guidance l a w s  

ve loc i ty  vector;  a l so  used as a u n i t  vector 
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vector appearing i n  construction of guidance l a w ,  otherwise 
used as a uni t  vector 

vehicle  pos i t ion  and velocity,  i n  Cartesian component, rela­
tive t o  a cent ra l  body 

state vector;  s ix  Cartesian components of pos i t ion  and veloc­
i t y  deviations from a reference o rb i t ;  sometimes wri t ten 

a ea r th ' s  ro t a t ion  rate 

al, . , ., spec i f ied  values of parameters pl, . . ., pm of reference 
o r b i t  

P 1,P2 constants r e l a t i n g  en t ry  f l i g h t  t i m e  and en t ry  range angle 

6( ) s m a l l  deviation from reference value of ( ) 

P grav i t a t iona l  constant o f  c e n t r a l  body 

cp en t ry  range angle 

K?!Lp matrices occurring i n  landing s i t e  guidance l a w  

-0 vectors 

( ) *  transpo se 

c 3  set  of objects  defined by contents of [ 'J 

DEFINITIONS 


It i s  usePul t o  begin with def in i t ions  of the pr imit ive notions underlying 
the  theory.  

The sa t i s f ac to ry  o r b i t s  are a l l  those t h a t  meet the  mission constraints  on 
vehicle motion. The reference o r b i t  i s  one member of the set  of s a t i s f ac to ry  
o rb i t s ;  the choice of reference o r b i t  may be based on one o r  more f ac to r s  such 
as f u e l  consumption, f l i g h t  t i m e ,  e t c .  

Since the  launch system attempts t o  i n j e c t  t he  vehicle on the reference 
o rb i t ,  it i s  frequent ly  adequate to assume t h a t  the  o r b i t s  of i n t e re s t  i n  the  
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midcourse guidance problem are  su f f i c i en t ly  close t o  the  reference o rb i t  t o  
allow the equations of motion t o  be l inear ized about the  reference. With t h i s  
assumption, the  theory need consider only deviations from the reference s t a t e .  

The state deviation, x ( t ) ,  r e f e r s  t o  a column of the  s ix  Cartesian compo­
nents of  posi t ion and veloci ty  deviations from the reference s t a t e  a t  time, t. 
It w i l l  sometimes be replaced by the  convenient f o r m  ( E ,  6V), i n  which the 
posi t ion and veloci ty  deviations are s ta ted  exp l i c i t l y .  There i s  no l o s s  of 
general i ty  i n  using posi t ion and veloci ty  deviations t o  define the s t a t e  since 
these are  re la ted  t o  t h e  deviations of any other s i x  independent parameters 
by means of appropriate transformations. Further, t h i s  def in i t ion  of the  
deviation s t a t e  i s  especial ly  sui ted t o  the development. 

The s t a t e  deviations a t  t w o  d i f fe ren t  times on an o rb i t  are  re la ted by 

where A ( t 2 , t l )  i s  the t r ans i t i on  matrix obtained by l inear iz ing the equations 
of motion about t he  reference o r b i t .  I t s  columns are  der ivat ives  of the s t a t e  
coordinates at t2 with respect t o  the s t a t e  coordinates at t l  evaluated on 
the  reference orb it. 

Certain se t s  of s t a t e s  per t inent  t o  the discussion are  next defined. 

The s e t  of a l l  deviation s t a t e s  at time t forms a six-dimensional l i nea r  
vector space N ( t )  ca l led  the  s t a t e  space. Each element of N ( t ) ,  when added 
t o  the  reference s t a t e  a t  t, defines an o r b i t .  The s t a t e  space N ( t )  i s  
everywhere equivalent t o  the  set o f  a l l  sextuples and, hence, includes some 
a r b i t r a r i l y  laxge deviations from the reference s t a t e .  Although equation (1) 
inadequately represents the ac tua l  motion when the deviations are large,  the 
theory i s  consistent based on the model of equation (1). I n  a p rac t i ca l  con­
t ex t  t h i s  means the l inear ized  theory may be applied only i n  guidance problems 
i n  which equation (1)adequately describes the o r b i t s  t h a t  occur. Such a 
r e s t r i c t i o n  is ,  of course, implici t  i n  the use of l inear ized equations of 
m o t  ion. 

The s e t  of sa t i s fac tory  states S ( t )  at time t i s  the set of a l l  those 
deviation s t a t e s  i n  N ( t )  which define sa t i s fac tory  o rb i t s .  The guidance 
process i s  an attempt t o  correct  an a rb i t r a ry  s t a t e  i n  N ( t )  t o  a state i n  
S ( t ) .  The s e t  of o r b i t s  defined by S ( t )  i s  f ixed at a l l  times; no new 
sa t i s fac tory  o rb i t s  are added or others deleted as the  mission proceeds. 

Lastly, the set R ( t )  i s  the  set of posi t ion deviations occupied at time 
t by the  sa t i s fac tory  o r b i t s .  It i s  evident t h a t  any a rb i t r a ry  state (6FY6i7) 
can be corrected t o  a state i n  S ( t )  by means of an impulsive veloci ty  cor­
rec t ion  only if  E? i s  i n  R ( t )  . 
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ANALYSIS 

Linear Impulsive Guidance Laws 

I n  midcourse guidance of space missions, it has f requent ly  been assumed 
t h a t  the veloci ty  corrections are impulsive, and tha t  the  o rb i t s  of i n t e re s t  
can be described by l inear ized  equations of motion. With these assumptions, 
the  relat ionship between the s t a t e  deviation and the  ve loc i ty  correction, 
t h a t  i s ,  the guidance l a w ,  i s  a l i nea r  one and i s  defined over the  e n t i r e  
s t a t e  space. The c l a s s  of guidance l a w s  with these general propert ies  may be 
termed l inea r  impulsive guidance l a w s .  

One approach t o  the analysis is  axiomatic; we begin with a def ini t ion of 
the  c l a s s  of l inear  impulsive guidance l a w s  i n  terms of the  elementary proper­
t i e s  it should possess, and then derive other propert ies  of t h i s  c lass  as a 
consequence of the def in i t ion .  

Definit ion.- A l i nea r  impulsive guidance l a w  i s  a ru l e  which spec i f ies  a 
unique instantaneous change of velocity,  l i nea r ly  r e l a t ed  t o  the present s t a t e  
deviation, such t h a t  the f i n a l  s t a t e  i s  sa t i s fac tory .  Such a correction i s  
specif ied f o r  every s t a t e ;  if  the present s t a t e  i s  sa t i s fac tory ,  then no cor­
rect ion i s  made. 

Suppose such a guidance l a w  i s  defined a t  time t, and x ( t )  i s  any s t a t e  
deviation. The change of s t a t e  specif ied by the guidance l a w  i s  l i nea r ly  
r e l a t ed  t o  x ( t )  f o r  every x ( t ) :  

Ax = G ( t ) x ( t )  

The 6 X 6 matrix G ( t )  w i l l  be termed the guidance l a w  matrix at t .  Since 
only the velocity i s  t o  be changed, then G ( t )  has the fo rm 

G(t)  = il;-t)G z ; ~  

where G ( t )  has been par t i t ioned  in to  3 X 3 submatrices. The veloci ty  correc­
t i o n  can a l so  be wri t ten as 

AT = G l ( t ) G F ( t )  + Gz(t)GT(t) 

After a correction has been made, the f i n a l  s t a t e  i s  

x&) = [I + G ( t ) l x ( t )  

If the present s t a t e  i s  sa t i s fac tory ,  then no correction i s  required; t ha t  i s ,  

G ( t ) x ( t )  = 0 
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when x ( t )  i s  a sa t i s fac tory  s t a t e .  Since [ I  + G ( t ) ] x ( t )  i s  a sa t i s fac tory  
s t a t e  f o r  any x ( t ) ,  the  guidance l a w  matrix s a t i s f i e s  the equation 

G ( t ) [ I  + G ( t ) ]  = 0 

The par t i t ioned  f o r m  of G ( t )  can be inser ted  t o  reduce the previous equation 
t o  

The guidance l a w  matrix associated with l i nea r  impulsive corrections satisfies 
equations (2) ,  but  not a l l  matrices which s a t i s f y  equations ( 2 )  are necessar i ly  
guidance l a w  matrices. The next sect ion w i l l  determine existence conditions 
and the  guidance l a w  matrix i n  t e r m s  of various fea tures  of the  s e t  of  satis­
fac tory  s t a t e s .  

Existence Conditions and the General Guidance Law Matrix 

This section explores the connections between the guidance l a w  matrix and 
the s e t  of sa t i s fac tory  s t a t e s .  It i s  found t h a t  l inear  impulsive guidance l a w s  
occur when the  sa t i s fac tory  s t a t e s  are  cer ta in  types of subspaces of the state 
space, and t h a t  the  guidance l a w  matrix can be given i n  terms of appropriate 
s t a t e s  f r o m  S ( t ) .  Some general propert ies  of the guidance l a w  matrix are  
given and, i n  par t icu lar ,  it i s  found t h a t  the submatrix G Z ( t )  can have only 
ce r t a in  mathematical f o r m s .  

The sa t i s fac tory  s t a t e s .  - Suppose the guidance l a w  e x i s t s  and G ( t )  i s  
i t s  matrix. Then f r o m  the  def in i t ion  of the guidance l a w ,  the s t a t e s  i n  
[ I  + G ( t )  ]N(t) a re  sa t i s fac tory  and a l s o  

G ( t ) x ( t )  = 0 

f o r  any s t a t e  which i s  sa t i s fac tory .  It f o l l o w s  eas i ly  tha t  the converse of 
these t w o  statements i s  a l s o  true. Consequently, if  G ( t )  ex is t s ,  then the 
sa t i s fac tory  s t a t e s  can be defined from the  guidance l a w  matrix by e i the r  of 
the following 

S ( t )  = [ I  + G(t)]N(t)  

S ( t )  = { x ( t )  : G ( t ) x ( t )  = 01I ( 3 )  

Necessary --._conditions f o r  t he  existence of G ( t ) . - The f i r s t  of equa­
t i o n  (3)-states t h a t  i f  G ( t )  ex i s t s ,  then S ( t )  i s  the l i nea r  vector sub-
space of N ( t )  formed by the  set of a l l  l i nea r  combinations of the columns of 
I + G ( t )  ; t h a t  is ,  the  columns of I + G ( t )  are  sa t i s fac tory  states and span 
the  subspace S ( t )  . The dimension of S ( t )  i s  equal t o  the order of the  
l a rges t  square nonsingular submatrix of I + G ( t )  . I n  terms of  i t s  3 X 3 
submatrice  s 
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-- 

I + G ( t )  = (4) 

and it i s  c lear  t ha t  the dimension of S ( t )  i s  at l e a s t  3. 

Further, R ( t ) ,  the  s e t  of posi t ions occupied at t by the sa t i s fac tory  
o r b i t s  is, equivalently, the set of a l l  l i nea r  combinations of the posi t ion 
elements of any s e t  of states which span S ( t ) .  I n  par t icu lar ,  R ( t )  i s  given 
by a l l  l i nea r  combinations of the  columns i n  the upper half of  I + G ( t )  and 
i s  therefore  three-dimensional, since the upper l e f t  submatrix I i n  equa­
t i o n  (4 )  i s  nonsingular. These statements a re  col lected i n  the following 
necessary conditions f o r  the  existence of a l i n e a - impulsive guidance l a w  
matrix. 

Lemma 1: If G ( t )  exists,  then S ( t )  i s  a l i nea r  vector subspace 
of N ( t )  such tha t  R ( t )  i s  three-dimensional. 

Thus, S ( t )  i s  a three-,  four-, o r  five-dimensional subspace of N ( t ) .
The t r iv ia l  case i n  which S ( t )  i s  six-dimensional need n o t  be considered, 
since i n  t h i s  case every s t a t e  i n  N ( t )  i s  sat isfactory,  and no correction i s  
ever made. That R ( t )  mst be three-dimensional i s  physically obvious, since 
it guarantees tha t  a t  l e a s t  one sa t i s fac tory  s t a t e  ex i s t s  corresponding t o  
every posi t ion deviation; and i n  any other case there w i l l  be posi t ion devia­
t ions  f o r  which no sa t i s fac tory  s t a t e  ex i s t s  and f o r  which a correction i s  
therefore impossible. 

The guidance 1aw-matrix.- The necessary conditions f o r  existence given by~ 

lemma 1 are a l s o  su f f i c i en t .  The proof of t h i s  fundamental f a c t  w i l l  follow 
f r o m  lemma 2 and theorem l b e l o w .  Lemma 2 i s  a formality; theorem 1 shows tha t  
the  guidance l a w  matrix can be given from any bas is  of  the sa t i s fac tory  s t a t e s  
and w i l l  be usefu l  i n  the l a t e r  t ex t .  

Lemma 2: Let S ( t )  be an n-dimensional subspace of N ( t )  and l e t  
s1 = (yl,Tl),. . ., S, = (Fn7Sn) be any bas is  of S ( t ) .  Then 
R ( t )  i s  three-dimensional if  and only i f  3 <_ n <_ 6 and three of- -
the  vectors rl, . . ., rn are  independent. 

A bas i s  of a l inea r  vector space i s  any s e t  of l i nea r ly  independent e l e ­
ments i n  the space which w i l l  generate every element i n  the space. The number 
of elements i n  a bas is  i s  equal t o  the dimension of the space. Further, the 
space can be generated as the s e t  of a l l  l inear  combinations of the  bas i s  e l e ­
ments. Thus, S ( t )  i s  t he  s e t  of a l l  l i nea r  combinations of  s1, . . ., sn, 
and R ( t ) ,  the s e t  of a l l  posit ions occupied by the sa t i s fac tory  s t a t e s ,  i s- -
the  s e t  of a l l  l inear  combinations of rl, . . ., rn.  Hence, R ( t )  i s  three--
dimensional i f  and only i f  n 2 3 and three of  the vectors 71, . . rn  
are independent. 
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Theorem 1: If S ( t )  i s  an n-dimensional subspace of N ( t ) ,  
n = 3, 4, 5, and SI = (Fl,Tl), - . ., Sn = (Fn,Tn) form a bas i s  of 
S ( t )  such tha t  Fly&,F3 are independent (renumber the  s t a t e s  
if necessary), then a l i n e a r  impulsive guidance l a w  e x i s t s  and i t s  
matrix i s  given as follows: Let W, V be the 3 X 3 matrices whose-
columns are Fl,FzYFsy and v1, 72, Tz, respect ively.  Then 

G l ( t )  = -Gz( t )VW-l  

f o r  n = 3 

f o r  n = 4 
~ TI-I + i ~ + i~2ii2 i f o r  ~ n = ~5 ~ 

where (i) G( t)  spec i f ies  the m i n i m  veloci ty  correction 

-
(ii) u i s  a u n i t  vector i n  the  d i rec t ion  of the  (nonzero) 

vector 
v4 - V w - l r ,  

(iii) El, are  any orthonomal p a i r  of  vectors i n  the  plane 
of the t w o  (nonzero, independent) vectors 

-

vj  - VW-lFj, j = 4, 5 


The proof of theorem 1 i s  car r ied  out i n  appendix A.  Note tha t  the  matrix 
W i s  nonsingular since i t s  columns are  assumed independent. The form of G ( t )  
i s  not the  m o s t  general l i nea r  impulsive guidance l a w  matrix when S ( t )  i s  
four- o r  f ive-dimensional but  corresponds t o  the condition tha t  t he  magnitude 
of the veloci ty  correction be minimized. The general r e s u l t  i s  noted i n  
appendix A but i s  not of  i n t e r e s t  here except i n  discussing the uniqueness of 
the guidance l a w  matrix. 

I n  view of  lemmas 1 and 2, if G ( t )  ex is t s ,  then the  conditions of 
theorem 1 can always be sa t i s f i ed ;  therefore,  t he  guidance l a w  matrix can 
always be given i n  one of  the forms of  t ha t  theorem. 

It should be noted i n  theorem 1tha t  guidance l a w  matrices exhibi t  ce r t a in  
propert ies  of form which depend only on the dimensions of S ( t ) .  The submatrix 
G 2 ( t )  can have only ce r t a in  mathematical forms. If we write 

- ­
w j  - v j - V w- -1-rj,  3 < j < n  


then G 2 ( t )  can be described as the  ref lect ion-project ion matrix with pro­
jec t ion  t o  t h e  space orthogonal t o  t he  n-3 independent vectors 7j. An 
a l t e rna te  view i s  tha t  the  mission constra.ints are  independent of t he  W j
components of t he  veloci ty  deviation. Thus, Gz( t )W cancels out the  pa r t  of-ST which i s  orthogonal t o  t h e  w j  and leaves unchanged the  components of  S T  
along 73 
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Such a r e s t r i c t i o n  on the  form of G z ( t )  i s  expected i n  v i e w  of  
equations ( 2 ) .  However, a la rger  c l a s s  of  matrices than the re f lec t ion-
project ion matrices given i n  theorem 1w i l l  s a t i s f y  equations (2); the  remaining 
matrices do not r e f l e c t  the condition t h a t  t he  veloci ty  correction i s  t o  be 
minimized. That i s ,  since the  mission constraints  are independent of the  W j
components of the f i n a l  veloci ty  deviation, then these components can be 
changed a r b i t r a r i l y  without affecting the  mission constraints,  and the  m i n i m u m  
correction i s  the  one tha t  makes no change i n  these components. 

Further, the  submatrix G l ( t )  i s  r e s t r i c t e d  t o  the extent t h a t  the range 
space of G l ( t )  i s  included i n  the range space of G 2 ( t ) ;  t ha t  is ,  G l ( t ) G F  
w i l l  l i e  i n  the  space orthogonal t o  the  Wj. These propert ies  are p a r t l y  sum­
marized by the following s ingular i t ies ,  which f o l l o w  eas i ly  from theorem 1: 

f o r  n = 4 

T T
TjGl(t) = EjG2(t) = G2(t)Ej = AT . Vj = 0 j = 1, 2 f o r  n = 5 

Necessary and suf f ic ien t  conditions f o r  the existence of G ( t ) . - Finally,  
lemma 2 and theorem 1 together s t a t e  the converse of lemma 1; tha t  i s ,  if  S ( t )  
i s  a l i nea r  vector subspace of N ( t )  such tha t  R ( t )  i s  three-dimensional, 
then G ( t )  e x i s t s .  These r e su l t s  combine t o  give a necessary and suf f ic ien t  
condition f o r  the  existence of the guidance l a w .  

Theorem 2: A l i nea r  impulsive guidance l a w  ex i s t s  at t if and only 
if S ( t )  i s  a l i nea r  vector subspace of  N ( t )  such tha t  R ( t )  i s  
three-dimensional. 

Uniqueness of the guidance l a w  matrix.- The uniqueness of the guidance l a w  
matrix corresponding t o  a given s e t  of sa t i s fac tory  s t a t e s  i s  investigated i n  
appendix B .  If G ( t )  i s  assumed t o  ex i s t ,  the r e su l t s  s t a t e  t ha t  G ( t )  i s  
unique, provided S ( t )  i s  three-dimensional and i s  unique when S ( t )  i s  four-
o r  five-dimensional if  the magnitude of the veloci ty  correction i s  minimized. 

To summarize the r e su l t s  of t h i s  section, a l inear  impulsive guidance l a w  
occurs when S ( t )  i s  any three-,  four- ,  f ive- ,  o r ,  t r i v i a l l y ,  six-dimensional 
subspace of N ( t )  such t h a t  there i s  a t  l e a s t  one element of  S ( t )  corre­
sponding t o  every posi t ion deviation. When t h i s  condition i s  s a t i s f i e d  and the 
veloci ty  correction i s  assumed t o  be minimized, then the guidance l a w  matrix 
i s  given uniquely by theorem 1 from any bas i s  of S ( t )  . 

Invariant Properties and Propagation of the Guidance Law Matrix 

Since the guidance l a w  i s  of continuing in t e re s t  throughout the mission, 
t h i s  section w i l l  consider the  propagation of the  guidance matrix. We f i r s t  
determine whether the  propert ies  discussed i n  the previous section a re  invariant 
with time. It i s  found tha t  S ( t )  remains a l i nea r  vector space of invariant  
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dimension throughout the mission. Hence, t h e  form of G 2 ( t )  i s  a l s o  invariant  
f o r  a l l  t i m e s  when G ( t )  e x i s t s .  Secondly, i f  G ( t o ) ,  the  guidance l a w  a t  the  
start of the mission, i s  assumed t o  exist, t he  r e l a t ion  between G ( t )  and 
G ( t o )  can be determined f o r  those times a t  which G ( t )  exists. 

Invariant propert ies . - The set of s a t i s f ac to ry  o r b i t s  i s  f ixed  throughout 
the  mission. If x( to)  i s  on a sa t i s f ac to ry  o rb i t ,  then from equation (1)the  
corresponding sa t i s f ac to ry  state on the  same o r b i t  at  t i m e  t i s  

If G ( t o )  ex is t s ,  then S ( to )  i s  a l i nea r  vector space. By taking the  union 
over a l l  states i n  S ( to ) ,  we obtain 

S ( t )  = A(t , to)S(to)  (5)  
I
The state t r ans i t i on  matrix A ( t , t o )  i s  never singular ( r e f .  1); hence, 

i f  G ( t o )  ex i t s ,  then f rom equation ( 5 ) ,  S ( t )  i s  everywhere a l i nea r  vector 
space with the same dimension. Therefore, the  form of  G 2 ( t )  and other 
dimension-dependent propert ies  of  form noted i n  theorem 1 are also invariant  
wherever the  guidance l a w  ex i s t s .  Further,  since S ( t )  i s  everywhere a l i n e a r  
vector space then the  existence conditions of theorem 2 are  met if R ( t )  i s  
three-dimensional. It should be noted t h a t  there  may be one or more t i m e s  
during a mission at which t h i s  condition i s  not met. I n  summary, 

Theorem 3: If G ( t o )  ex i s t s ,  then (i) S ( t )  i s  everywhere a l i nea r  
vector space with time-invariant dimension, and (ii) G ( t )  e x i s t s  
if and only if R ( t )  i s  a three-dimensional l i nea r  vector space. 

Ekistence c r i t e r i a . - I n  the  following, G ( t o )  i s  assumed t o  ex i s t ,  and 
the  r e l a t ion  between G ( t )  and G(t , )  i s  obtained. It i s  f i r s t  necessary t o  
give the  existence condition i n  t t  rms of G ( t o )  and the t r ans i t i on  matrix: 

The t r ans i t i on  matrix may be par t i t ioned in to  i t s  3 X 3 submatrices: 

The sa t i s fac tory  s t a t e s  a t  t, f r o m  equations (3) and (5), can now be expressed 
as 

- .  

l1f A ( t , t o )  were singular,  d i s t i n c t  states would exist at to which 
would generate iden t i ca l  states at t under f r e e  motion and, hence, d i s t i n c t  
o r b i t s  which become iden t i ca l  o r b i t s .  

11 




The posit ions occupied by the  sa t i s fac tory  o r b i t s  at  t form the l i n e a r  
vector space given by 

R ( t )  {6F(t)  = Bl(t , to)GF(to) f A 2 ( t , t o ) [ I  + G2(to)I6T(to); 

EF(to),6 ~ (to)arbi t rary]  (9) 

A necessary and suf f ic ien t  condition f o r  the existence of  G ( t )  i s  t ha t  
R ( t )  be three-dimensional; t h a t  is ,  at least one sa t i s fac tory  s t a t e  e x i s t s  
corresponding t o  every posi t ion deviation a t  t .  The matrix G 2 ( t o )  can have 
only ce r t a in  forms as given i n  theorem 1of the  preceding section. These forms 
depend only on the dimension of S ( t )  

-I f o r  n = 3 

G 2 ( t o )  = -If EFT f o r  n = 4 
- - T  - - T-1 + ulul + u2u2 f o r  n = 5 

-
where n i s  the  dimension of 

I 
S ( t )  and E, El, u2 are the u n i t  vectors of 

theorem 1. 

Existence c r i t e r i a  are  obtained by subs t i tu t ing  these forms of G 2 ( t 0 )
in to  equation (9)and determining the conditions f o r  which R ( t )  i s  three-
dimensional. Equation (9)  gives R ( t )  as the s e t  of a l l  l i nea r  combinations 
of the six columns of B l ( t , t o )  and A 2 ( t , t o ) [ I  + G2(to)];  hence, R ( t )  i s  
three-dimensional when three of  the s ix  columns are  independent. The r e s u l t s  
are  readi ly  obtained and are summarized by the  following corollary.  

Corollary 1: If G ( t o )  e x i s t s  and dim[S(t)] = n, n = 3, 4, 5 then 
G ( t )  e x i s t s  i f  and only i f  one of the  following i s  sa t i s f i ed :  

(a) B l ( t , t o )  i s  nonsingular 

(b) 	 n = 4, B l ( t , t o )  has rank 2, and A2(t, to)Z i s  not  i n  the  
range space of  B l ( t , t o )  

(4 	n = 5, B l ( t , t o )  has rank 2, and one of t he  vectors A 2 ( t , t o ) u l ,  
A2(t,to)Ez i s  not i n  the range space of B l ( t , t o )  

(d) 	 n = 5, B l ( t , t , )  has rank 1, and t h e  t w o  vectors, A 2 ( t , t o ) T i l ,  
A2(t,to)Ez are nei ther  i n  the range space of B l ( t , t o )  nor 
dependent 

12 


I 




A propagation formula.- The guidance l a w  ma t r ix  G ( t )  exis ts  as specified 
i n  corol lary 1. When G ( t )  ex i s t s ,  it can be r e l a t ed  t o  G ( t o )  through the  
t r ans i t i on  matrix. This r e l a t ion  i s  obtained below f o r  case (a) of corol lary 1 
i n  which B l ( t , t o )  i s  nonsingular. The remaining cases are neglected here 
because the  r e s u l t s  have not been obtained i n  a useful  form. 

Equation (7) gives S ( t )  as the set of a l l  l i nea r  combi-nations of the 
columns of a matrix. To obtain the propagation formula, subs t i tu te  the appro­
p r i a t e  form of G 2 ( t o )  according t o  the  dimension of S ( t )  i n to  the  ma t r ix  
i n  equation (7 ) .  If n i s  the  dimension of S ( t )  , the  resu l t ing  ma t r ix  must 
have n independent columns. For example, i f  n = 4 the  matrix becomes 

There i s  exactly one independent column among the right-hand three columns and 
t h i s  together with the l e f t  -hand three columns provides four  independent s t a t e s  
i n  S ( t ) .  I f ,  next, B l ( t , t o )  i s  assumed nonsingular then the conditions of 
theorem 1 are m e t ;  the  m a t r i x  above provides four  independent s t a t e s  i n  S ( t )  
of which the f irst  three provide three  independent posi t ion deviations.  Con­
sequently, the  guidance law matrix follows immediately from theorem 1. F i r s t ,  
define the  matrix 

Final ly ,  the  guidance l a w  m a t r i x  i t s e l f  i s  given by the following corol lary t o  
theorems 1 and 3: 

Coro l l a ry  2: If G ( t , )  e x i s t s  and B l ( t , t o )  i s  nonsingular, then 
G ( t )  ex i s t s  and i s  given as f o l l o w s :  

Let S ( t )  be n-dimensional; n = 3, 4, 5 .  Then 

t )  = - ~ 2 (t 1 ~ 2(t,t o  ) B i l (  t , t o  1 
f o r  n = 3 

f o r  n = 4 

-I -t- El(t)iZl 
T T 

( t)  f o r  n = 5(t)  +- ~ 2 ( t ) ~ 2  



where (i)	t he  form of  G Z ( t )  assumes t h a t  t he  veloci ty  correction i s  
minimized when n = 4, 5 

(ii)	For n = 4,g(t) i s  a u n i t  vector i n  the  d i rec t ion  of 
BT( to1 

(iii)	For n = 5, E l ( t ) ,  E2( t )  are any orthonormal p a i r  of 
vectors i n  the plane of  the  two (independent)2 vectors 
= d t o )  Y BG!(to) 

( iv )  	$to), T i l ( t 0 ) ,  Tz(to) a re  the  u n i t  vectors associated 
with G 2 ( t 0 )  i n  theorem 1 and B l ( t , t o ) ,  B 2 ( t , t o ) ,  B 
are matrices defined i n  equations (8) and (10) 

Derivation of  Guidance Laws From Constraints 

The preceding analysis began with the  primitive notion of sa t i s fac tory  
states and a def in i t ion  of the  l inear  impulsive guidance l a w  and then obtained 
the theo re t i ca l  r e s u l t s  as consequences of the  def in i t ion .  I n  pract ice ,  guid­
ance l a w s  a re  obtained by applying constraints  t o  the  vehicle motion i n  order 
t o  meet mission requirements. This process i s  suf f ic ien t ly  general t h a t  the 
notion of guidance constraints  mist play an important r o l e  i n  the  theory. 

I n  t h i s  sect ion the  connection of guidance constraints  with the  preceding 
theory i s  exasnined, and a uniform method f o r  deriving l i nea r  impulsive guidance 
l a w  matrices from the  guidance constraints  i s  given. 

Guidance cons t ra in ts . - The guidance constraints  are a number of r e s t r i c ­
t ions  on the vehicle motion t o  be s a t i s f i e d  i n  order t o  meet the  mission 
requirements. The guidance l a w  i s  i t s e l f  a statement of these constraints .  
In  equation ( 3 ) ,  

S ( t )  = { x ( t ) :  G ( t ) x ( t )  = 01 ( 3 )  

That i s ,  those states which s a t i s f y  the  mission requirements are  given by equa­
t i o n  (3) as a l l  states f o r  which the  l i nea r  function G( t )x ( t )  i s  zero.  The 
number of  independent sca la r  constraints  imposed by the guidance l a w  on the 
vehicle motion i s  then the  number of l i nea r ly  independent equations i n  

G( t )x ( t )  = 0 

or, equivalently, the  rank of G ( t )  . It i s  readi ly  determined from equations (2) 
t h a t  the  rank of G ( t )  i s  equal t o  the  rank of G , ( t ) ,  which, from theorem 1, 
i s  specif ied by the  dimension of S ( t )  . 

Lemma 3: L e t  G ( t )  be the  matrix of a l i nea r  impulsive guidance l a w  
defined a t  t .  Then S ( t )  i s  an n-dimensional subspace of N ( t ) ,  
n = 3, 4, 5, and the  guidance l a w  imposes 6-n independent sca la r  
constraints  on the  s t a t e .  

- _ -
‘Since u1,u2 are  independent and B i s  nonsingular, BEl, BE2 are 

independent. 
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It may be noted t h a t  a l i nea r  impulsive guidance l a w  cannot impose more 
than three constraints .  Further, since n i s  invariant  throughout the  mission 
(theorem 3) ,  the number of constraints  imposed by G ( t )  i s  a l so  invariant .  

Derivation of the  guidance l a w  from cons t ra in ts . - I n  pract ice ,  guidance 
l a w s  are  obtained by applying constraints  t o  the  vehicle motion i n  order t o  
s a t i s f y  the mission. This process i s  generally applicable and, with sui table  
r e s t r i c t ions ,  leads d i r ec t ly  t o  l i nea r  impulsive guidance l a w s .  

L e t  

be any s ix  independent sca la r  parameters of o r b i t a l  motion. This means t h a t  
the set of a l l  p, {p], i s  i n  one-to-one correspondence with the set of a l l  
o r b i t s .  The s ix  Cartesian coordinates of posi t ion and veloci ty  at some time 
t ,  X ( t ) ,  a re  of ten used, but ,  i n  general, the  parameters may be chosen f o r  
convenience. I n  t h i s  case, X ( t )  can always be given i n  terms of p by v i r tue  
o f  t h e i r  one-to-one correspondence with the s e t  of  a l l  orb i t s :  

The guidance constraints  are a number of r e s t r i c t i o n s  on the vehicle 
motion generated by the mission requirements. Suppose the  guidance constraints  
have been expressed as cons t ra in ts  on independent o r b i t a l  parameters and tha t  
these are  included among the  s i x  parameters of (11);i n  par t icu lar ,  suppose 
the mission requirements are met by a l l  o rb i t s  f o r  which the parameters 
pnfl, . . ., p6, n <_ 6, have the specif ied values an+=, . . ., ag. (If 
n = 6, then no parameter i s  specified,  and we have the  t r i v i a l  case i n  which 
a l l  o rb i t s  s a t i s f y  the guidance cons t ra in ts . )  The sa t i s f ac to ry  o r b i t s  are  now 
defined by 

A reference o rb i t  i s  chosen f r o m  among the  p, of equation (13). The remain­
ing o r b i t s  can be re fer red  t o  the  reference o rb i t  by: 

and the  guidance constraints  become 

6pnc1 = . . . = 6p6 = 0 

Assume, next, t ha t  t h e  o r b i t s  of i n t e r e s t  are su f f i c i en t ly  near the  
reference o r b i t  t h a t  they may be adequately represented by the f i rs t  t w o  terms 
of a Taylor series expansion of equation (12) about the  reference o rb i t .  The 
deviation s t a t e  a t  any time can then be expressed as: 



The matrix, F l ( t ) ,  i s  nonsingular by v i r tue  of  the one-to-one correspondence of  
N ( t )  and {Sp] with the  set of a l l  ( l inear ized)  o rb i t s  and, hence, with each 
other .  That is ,  t he  columns of F l ( t )  are six independent s t a t e s  i n  N ( t )  . 
The sa t i s f ac to ry  states are a l l  those deviation s t a t e s  t h a t  s a t i s f y  (1.5): 

S ( t )  = x ( t )  = 

Equation (17) gives S ( t )  as the  n-dimensional l i nea r  vector subspace of 
N ( t )  for which the  n states 

are a bas i s .  The existence conditions of theorem 2 f o r  a l i nea r  impulsive 
guidance l a w  can now be s a t i s f i e d  if and only if R ( t )  i s  three-dimensional. 
This occurs if and only if (i) n i s  not less than 3, and (ii)three of the  
vectors 

are independent. Assuming t h a t  these conditions are met, then the  conditions 
of theorem 1 are  f u l l y  s a t i s f i e d  by the  n states of equation (18) and the  
guidance l a w  matrix can now be wri t ten d i r e c t l y  f r o m  theorem 1. The following 
theorem gives the  r e su l t s :  

Theorem 4: L e t  pT = (pl, . . ., p,) be six independent sca la r  
parameters of o r b i t a l  motion; l e t  X o ( t )  be the s t a t e  on a ref­
erence o rb i t ,  and l e t  the  equations r e l a t ing  X ( t )  t o  p be 
l inear ized  about the  reference o rb i t :  
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Then (i)a l inea r  impulsive guidance l a w  sat isfying the  constraints  

6 p j = 0  j = n + L , .  . . , 6  

ex i s t s  i f  and only if  n 2 3 and 

(ii)	If t he  guidance l a w  exists,  then the  guidance l a w  matrix 
which specif ies  the minimum veloci ty  correction i s  given 
as follows. Let aF/apk; k = 1, 2, 3 be three independent 
vectors (renumber the parameters if necessary) and define 

then 
G l ( t )  = - G Z ( t ) V ( t ) W ( t ) - l  

i -I f o r  n = 3 

f o r  n = 4 
- - T 
+ u2u2I-I+ E ~ E ~ ~for n = 5 

where ( i)a l l  derivatives are evaluated on the reference o rb i t  

(ii)	for n = 4,U i s  a un i t  vector i n  the direct ion of
(avap,) - vw-qa?/ap,) 

(iii)	f o r  n = 5, Ul, Ti2 are any orthonormal pa i r  of vectors 
i n  the plane of (aT/apk) - w-l(ar/apk); k = 4, 5 

The results i n  theorem 4 p a r a l l e l  those of theorem 1except that the  guidance 
l a w  matrix i s  given i n  terms of appropriate derivatives of the  s t a t e .  The 
derivatives appearing i n  equation (18) and i n  the  guidance l a w  ma t r ix  form a 
bas i s  of S ( t ) ,  bu t  the guidance l a w  i s  unique and independent of the bas i s  Of 

S ( t )  t h a t  i s  used; t h a t  is ,  t he  der ivat ives  appearing i n  the guidance l a w  
matrix can be taken with respect t o  any n independent scalas: parameters of 
o r b i t a l  motion which axe a lso  independent of t h e  constraint  parameters. 



I 

It may be noted t h a t  a linea2 impulsive guidance l a w  does not occur if 
more than three constraints  axe required as, for example, i n  the rendezvous 
constraints  [ sT( t f )  = 0, 6T(tf)  = 01. 

A n  Alternate Construction of Guidance Law From Constraints 

Thus far, l i nea r  impulsive guidance l a w s  have been t reated by considering 
the set of s a t i s f ac to ry  s t a t e s ;  theorem 1 shows tha t  G ( t )  can be given from 
any bas is  of S ( t ) .  To relate the  guidance l a w  t o  the guidance constraints ,  
according t o  the  previous section, if there  are m (m < 3) independent guidance 
constraints ,  then a bas is  of S ( t )  i s  given by derivatives of the  s t a t e  with 
respect t o  any 6-m independent parameters which are  a l s o  independent of  the 
constraint  parameters. The guidance l a w  mat r ix  can then be formulated from 
these der ivat ives .  

An a l te rna te  construction of the guidance l a w  ma t r ix  f r o m  the guidance 
constraints  i s  obtained by considering d i r ec t ly  the conditions under which the 
constraints  can be s a t i s f i e d .  The resu l t ing  def in i t ion  of the guidance l a w  
w i l l  usual ly  be simpler t o  apply than theorem 4. 

Let pT = (pl, . . ., pm) be m independent sca la r  parameters of o r b i t a l  
motion r e l a t ed  t o  the present s t a t e  X ( t )  by 

and suppose t h a t  the guidance constraints  are tha t  p i s  the specif ied vector 

pT = (ai, - - 7  a m >  

Choose a reference o rb i t  X o ( t )  which satisfies these constraints  and assume 
t h a t  t he  o r b i t s  of i n t e re s t  are suf f ic ien t ly  close t o  the  reference o rb i t  t ha t  
the  parameters p may be approximated by the f irst  t w o  terms of a Taylor 
s e r i e s  expansion of equation (19a) about the  reference o r b i t .  Subtracting the 
reference equations from (19a), obtain 

6p = A ( t ) G F ( t )  -I- B(t)GT(t) ( 19b1 
Here, A ( t ) ,  B ( t )  are  m X 3 matrices i n  which the j t h  rows are the deriva­
t ives ,  evaluated at the reference o rb i t ,  of p j  with respect t o  the Cartesian 
coordinates of posi t ion and velocity, respectively.  Since the m parameters 
of p are  independent, then 

rank [AB] = m ( 2 0 )  

The guidance constraints  are 

6 p j = 0  j = l , . .  ' J  m 
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m d  we define the  existence of a guidance correction which s a t i s f i e s  these 
constraints  as follows: 

A guidance correction, AT, ex i s t s  at t if  f o r  every deviation 
s t a t e  (6F,6f7) there  exists a AT which s a t i s f i e s  %he m 
independent equations : 

0 = A ( t ) G F  + B ( t ) ( G T  + AT) (22) 

Existence condit,ions .- A n  existence condition f o r  the guidance correction 
i s  r e a d i l y  established. 

Theorem 5: Equation (22) has a solution ( i . e . ,  a guidance correction 
ex i s t s  a t  t )  if  and only if 

rank (B)  = m <- 3 

Proof - Equation (22) can be rewri t ten as: 

B ( t )  A T =  -[A(t) B ( t ) I & x ( t )  (23) 
where A, B are  m X  3 matrices. We seek the conditions f o r  which these m 
inhomogeneous l i nea r  equations have a solution, AT, f o r  a rb i t r a ry  6x. The 
Kronecker-Capelli theorem ( r e f .  6) s t a t e s  t h a t  equation (23) i s  compatible 
(has at least one solution) if and only i f  the  rank of B equals the rank of 
the augmented matrix, Ba, where the augmented matrix i s  formed by attaching 
the m x 1 column 

b = [A B ] ~ x  

t o  t he  coeff ic ient  matrix, B; 
Ba = [B b] 

Thus, the Kronecker-Capelli theorem i s  s a t i s f i e d  i f  and only if b i s  a l i nea r  
combination of t he  columns of B .  But b can be any l i nea r  combination of the 
columns of [A B] since 6x i s  a rb i t ra ry ;  hence, the columns of [A B] a re  
required t o  be l inear  combinations of the columns of B.  Thus, 

rank (B)  >_ rank [A B] = m 
and, since the columns of B are  contained i n  the columns of [A B], 

rank (B)  <_ rank [A B] 

Thus, the  Kronecker-Capelli theorem i s  s a t i s f i e d  if +d only if 

rank (B)  = rank [A B] = m (24) 

Note tha t  B i s  an m x 3 matrix whose maximum rank i s  minimum {m,3] and 
equation (24) cannot be s a t i s f i e d  i f  m > 3 .  

The guidance l a w  matrix.- Suppose t h a t  the guidance correction ex i s t s .  
Then the  general solut ion of equation (22) can be given d i r ec t ly  from re fe r ­
ence 7 (theorem 2, corol lary 1); 



where B+ indicates  the pseudo-inverse3 of B and the  vector T i s  any 
a rb i t r a ry  vector orthogonal t o  the  domain (row space) of B. Now, the  f i r s t  
t w o  terms on the right-hand s ide of equation (25a) l i e  i n  the  domain of B; 
i n  f a c t ,  BfB i s  the  matrix which projects  on to the  (m-dimensional) domain of 
B. Thus, T? i s  orthogonal to t he  f i rs t  two terms, and if we adopt the  condi­
t i o n  that T i s  to be chosen such tha t  AT i s  a minimum, then Z w i l l  be 
zero. The desired solut ion of equation (23) i s  then 

AT = -B+A~T - B + B ~ T  ( 2 3 )  

The corresponding guidance l a w  matrix can now be ident i f ied :  

G l ( t )  = -B+A 

G Z ( t )  = -B+B 

It i s  readi ly  ve r i f i ed  tha t  equation (25b) satisfies the def in i t ion  of a l i nea r  
impulsive guidance l a w .  Further, t ha t  def in i t ion  can be s a t i s f i e d  by more 
general choices of 77 than T = 0, as noted i n  appendix A, but the general case 
i s  not of i n t e re s t  i n  t h i s  paper. 

Thus far, it has been shown t h a t  i f  a guidance correction ex i s t s ,  a matrix 
can be wri t ten f o r  a l i nea r  impulsive guidance l a w .  Conversely, if  t h a t  matrix 
can be writ ten,  then equation ( 2 3 )  has a t  l e a s t  one solution for every devia­
t i o n  state, 6x, and the  guidance correction can be said t o  ex i s t .  I n  summary, 

Theorem 6: Let pT = (ply . . ., pm) be m independent scalar  
parameters of o r b i t a l  motion; l e t  X o ( t )  be the s t a t e  on a reference 
orb i t ,  and l e t  t he  equations r e l a t ing  p t o  the s t a t e  be l inear ized  
about t he  reference o r b i t  

6p = A ( t ) G J i ; ( t )  + B ( t ) G Y ( t )  

Then (i)	a l inea r  impulsive guidance l a w  sa t i s fy ing  the  constraints  
6p = 0 ex i s t s  if and only if 

rank B ( t )  = m <_ 3 

(ii)	If a guidance l a w  exists,  then the  guidance l a w  matrix which 
spec i f ies  the  minimum veloci ty  correction i s  

_ _  -

SThe pseudo-inverse i s  a generalization t o  a rb i t r a ry  matrices of  the 
inverse of nonsingular square matrices. References 7 and 8 may be consulted 
and some per t inent  examples of pseudo-inverses are given i n  the next sect ion 
of t h i s  paper. The pseudo-inverse, B+, of B i s  the unique solution of t he  
four  equations : 

BB+B = B, BB+ = ( B B + ) ~  

B+BB+ = B+, B ~ B= ( B + B ) ~  

Note t h a t  if B i s  a nonsingular square matrix, then B' is  the ordinary 
inverse, B - l .  
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Theorem 6 w i l l  usual ly  be eas ie r  t o  apply than theorem 4. It should be 
noted t h a t  only the  6 m  ( sca la r )  derivatives of the  constraint  parameters with 
respect t o  the  Cartesian coordinates of the  state are required f o r  the  con­
s t ruc t ion  of G ( t )  . Theorem 4 requires the completion of the m constraint  
parameters t o  a set of s ix  independent parameters and then defines G ( t )  f r o m  
6(6-m) derivatives of the s t a t e  coordinates with respect t o  the  new 
parameters. 

It may be noted t h a t  G(t) can be expressed i n  terms of the  matrices 
A ( t o ) ,  B ( t o )  for some f ixed  t i m e ,  to, and the t r ans i t i on  matrix, A ( t , t o )  from 
the following re la t ions  

T
A ( t )  = A ( t o ) A 4  - B ( t o ) A z  

TB ( t )  = B ( t 0 ) A T  - A ( t o ) A 2  

where AI, . . ., are the submatrices of A ( t , t o )  as i n  equation (6) .  

Remarks -on .. . - - _theorems 4 and 6. - Theorems 4 and 6 are necessarily equivalent; 
it can be demonstrated -independently t h a t  the  existence conditions and guidance 
l a w  matrices of  these t w o  theorems are equivalent. The method i s  outlined 
b r i e f l y  below. 

Suppose pl, . . ., p, are six independent sca la r  parameters of o r b i t a l  
motion r e l a t ed  t o  the  state deviation by the l ir iearized equations : 

6p = A(t)Gx(t) 

6x( t )  = B(t)Gp 

where A, B are nonsingular 6 x 6 matrices and B = A-l. Suppose tha t  t he  
guidance constraints  are 

8pj = O  j = 1, . . ., m s 3  

and p a r t i t i o n  A, B as follows: 

(m x 3 )
A =  

-m x 3) (6-mx 3 )I 
B =  


Theorem 6 constructs the guidance l a w  f rom Al and A2, and theorem 4 gives 
G ( t )  from B2 and B4. Noting t h a t  AB = BA = 16, we have the  t w o  re la t ions  
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A1B2 f AzB4 = 0 (m x 6-m) ( 2 7 4  

B1A2 f B2A4 = 0 (3 x 3) (2nd 

With these two r e l a t ions  it can be shown t h a t  (proof omitted) for m 5 3: 

rank (A2) = m IFF rank (BJ = 3 

The l e f t - and right-hand s ides  above we, respectively,  the existence condi­
t ions  of theorems 6 and 4; hence, the two are equivalent. 

Next, assume t h a t  t he  existence conditions are s a t i s f i e d  and l e t  W be 
the  m a t r i x  whose columns are t h e  three independent columns of B2 and V the-
corresponding columns of B4. Further, l e t  Fj,vj be any remaining column 
of B2 and i t s  corresponding column f rom B4. Then equation (27a) yields  

-A2+Al = (Az+A2)VW-l) 

Substi tuting (28a) in to  the  second equation yields  

[A2+A2I[Vj  - VW-lFj] = 0 (28-b 1 
From theorem 6, G Z ( t )  i s  the  m-dimensional reflection-pro ject ion m a t r i x  pro--
jetting t o  the space orthogonal to the  3-m independent vectors, vj - VW-lFj. 
From equation (28b) it readi ly  f o l l o w s  t h a t  the r e s u l t  f o r  G Z ( t )  i s  iden t i ca l  
i n  the t w o  theorems. From t h i s  r e s u l t  and equations (283) it follows imnedi­
a t e l y  t h a t  the  expressions for G l ( t )  are also iden t i ca l  i n  the  t w o  theorems. 

Examples 

Some examples of guidmce l a w  matrices f r o m  the  lunar and interplanetary 
mission s tudies  are given below. These w i l l  serve to i l lust ra te  the  applica­
t ions  of theorems 4 and 6 and the propert ies  of form for matrices of l i nea r  
impulsive guidance l a w s .  

Example 1: Fixed t i m e  of a r r i v a l  guidance ______I- (e .g. , ref. 1).- The guidance 
constraints  require an in tkrcept ion  of the  reference o rb i t  at some fixed time, 
tF '  The l inear ized r e l a t ion  between the state at two d i f fe ren t  times i s  given
by equation (1). With the t r ans i t i on  matrix par t i t ioned  as i n  equation (6), the  
posi t ion deviation at t F  i s :  

6F($) = Al(tF, t )SF(t)  f A 2 ( t ~ , t ) 8 v ( t )  (29) 

The l inear ized guidance constraints  are : 

6p = 6F(tF) = 0 
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Theorem 6 can be applied d i r e c t l y  t o  obtain: 

(a) G ( t )  e x i s t s  if and only if Ap(tF,t) i s  nonsingula,r4 

(b)  If G ( t )  ex i s t s ,  then 

This i s  the  pr inc ipa l  example i n  the c l a s s  f o r  which S(t) is  three-
dimensional. Other examples can be given by applying any three independent 
s ca l a r  cons t ra in ts  t o  the vehicle motion. 

A number of var iable  axr iva l  time guidance l a w s  occur to i l l u s t r a t e  the 
c l a s s  for which S ( t )  i s  four-dimensional. Some of these are  based on the 
pr inc ip le  of nul l ing only pa r t  of the miss (pos i t ion  deviation at  axr iva l )  
r a the r  than using fixed-time-of - a r r iva l  guidance t o  correct  the t o t a l  m i s s  
(e .g .  , r e f s .  2, 3, 4). If such a guidance law can be used, the  f u e l  require­
ments of fixed-time-of - a r r iva l  guidance w i l l  usual ly  be relieved, as i n  some 
applications of reference 2 which have employed a s ingle  midcourse correction, 
o r  i n  the s i m l a t i o n s  of reference 3 where the downrange m i s s  cannot be e s t i ­
mated very well  u n t i l  l a t e  i n  the  mission. 

Example 2: Interplanetary variable a r r i v a l  time guidance ( r e f .  4 ) .  - The 
guidance attempts t o  obtain a desired pos i t ion  r e l a t i v e  t o  the t a rge t  planet .  
The reference o r b i t  has zhe desired r e l a t i v e  posi t ion,  &,, at the reference 
a r r i v a l  t i m e  tF '  kt VR be the  ve loc i ty  of the  vehicle r e l a t i v e  t o  the 
planet  at tF.  Then the  r e l a t i v e  posi t ion of the vehicle a t  times near t F  
on any nearby o r b i t  can be approximated by the ( l inear ized)  expression 

This expression assumes t h a t  the  r e l a t i v e  ve loc i ty  i s  approximately f ixed  on 
a l l  nearby o r b i t s  (accelerat ion of the  vehicle and planet i n  the time i n t e r v a l  
( tF, tF 4- 6 t )  has been neglected).  The constraints  a re  s a t i s f i e d  i f  6F(tF)
i s  chosen so tha t  

x ( t F  f 6 t A )  = &-J 

for some delay i n  the  a r r i v a l  time, 6 t A .  For a l l  o r b i t s  on which t h i s  i s  t rue ,  
equation (30) gives the r e l a t i o n  

t h a t  is, the cons t ra in ts  a r e  s a t i s f i e d  by a l l  o r b i t s  f o r  which 6F(tF) i s  
p a r a l l e l  t o  vR. The converse i s  a l so  t rue .  Equivalently, the guidance seeks 

%he matrix &(tFyt )  i s  singular i n  Keplerian o r b i t a l  motion when t 
and t F  e i t h e r  a re  iden t i ca l  or correspond t o  points  of the  reference o r b i t  
which d i f f e r  i n  t rue  anomaly by m .  Such instances can occur i n  interplane­
tary f l i g h t s ,  as i n  the r e tu rn  legs  of t he  o r b i t s  of reference 3. 
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t o  cancel the lateral miss (posi t ion deviation at  t F  perpendicular t o  vR),
but  t he  downrange miss (along v - )  can be m b i t r a r y  since it only determines 
the  delay i n  arrival t i m e .  

Let  V be a u n i t  vector i n  the d i rec t ion  of 7 ~ ;then the guidance con­
s t r a i n t s  can be m i t t e n  as 

6p = (I - -d)G(tp) = 0 ( 3 W  

Equation (29 )  gives t h e  r e l a t ion  between t h e  guidance constraints  and t h e  
state deviations : 

(1 - $)E($)= (I - M ) [ A i ( $ , t ) 6 F ( t )  + &(%, t )68 ( t ) ]  

Theorem 6 can be applied d i r e c t l y  t o  give: 

(a) A guidance l a w  exists IFF rank (I - - ) A 2 ( t ~ , t )  = 2 

(b) If a guidance l a w  exists,  then (time arguments dropped) : 
-3 + -3

G l ( t )  = - [ ( I  - w )A21 (I - w ) A i  

If A2 l̂ s nonsingular, then (a)  i s  automatically satisf ed and the express .ons 
i n  (b)  can be reduced as f o l l o w s :  

[ ( I  - %)A2]+ = (I - *)Ai1 

where 

(I - S ) A S 1 ( I  - #) = (I - E T ) A S ’  

from which the guidance l a w  matrix becomes 

This r e s u l t  i s  s i m i l a r  t o  the fixed-arrival-t ime guidance except t h a t  the  W 
-component of veloci ty  i s  unchanged since it a f f ec t s  only terminal posi t ion 

deviations along VR. Equations ( 3 2 )  preserve the downrange m i s s  due t o  
inject ion errors ,  and if t h i s  m i s s  i s  large,  there  w i l l  be large deviations 
from the reference o r b i t  near t he  end of the mission. 
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Example 3.: Terminal phase per icenter  guidance ( ref .  3)5. - Pericenter 
guidance Bas de r ived fo r  use- i n  the terminal phase of interplanetary missions. 
It operates within the sphere of influence of the t a rge t  planet and seeks t o  
obtain the reference value of the radius of per icenter  and t o  place the pe r i ­
center posi t ion i n  the  plane of the  reference o rb i t  r e l a t i v e  t o  the  ta rge t  
planet .  Reference 3 derives the guidance l a w  matrix from derivatives of the 
two-body equations of motion. An a l te rna te  formulation i s  given here In terms 
of the  t r ans i t i on  matrix. 

The l inear ized  equations governing the per icenter  posi t ion are of the form 

6Fp = R ( t ) G F ( t )  + V ( t ) G v ( t )  (33) 

where (GF,GT) i s  the  s t a t e  deviation from the reference o rb i t  r e l a t ive  t o  the 
t a rge t  planet.  I n  par t icu lar ,  if tF i s  the  reference a r r i v a l  time corre­
sponding t o  per icenter  on the  reference o rb i t ,  then write equation (33) as: 

"p = Ro6r(tF) + V&?(tF) (34) 

where Ro, Vo r e l a t e  6rp t o  deviations f rom the reference o rb i t  at tF '  

The matrices Ro, Vo are  readi ly  determined as f o l l o w s .  Define the 
orthonormal vectors E, 77, Ti which l i e ,  respectively,  along the reference 
pericenter posit ion,  along the veloci ty  vec'cor at pericenter,  and along the  
normal t o  reference o r b i t a l  plane. The t i m e  tF  corresponds t o  pericenter on 
the  reference o rb i t  so t h a t  the reference s t a t e  a t  t F  can be wri t ten 

-r ( t F )  = rpoU 

Next, consider, successively, s m a l l  deviations 6 r ( tF ) ,  6?(tF) along the three  
direct ions U, 77, E and obtain the corresponding deviations i n  per icenter  
posit ion,  6Fp. Summing these deviations (algebra omitted), obtain 

The guidance constraints  require t h a t  the per icenter  posi t ion l i e  i n  the 
reference o r b i t a l  plane, or  

2 ­n 6rp = 0 

and that the value of t he  radius of per icenter  be the  same as the  reference 
value ; 

IF(tF) + 6rpl - I r ( tF) I  = 0 

- .. 

5The term, periapse guidance, used i n  reference 3, i s  lexicographically 
doubtful and has been changed t o  per icenter  guidance i n  t h i s  paper. 
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This can be l inear ized  t o  t he  form: 

Inser t ing  these i n  equation (35), the  l inear ized guidance constraints  are: 

Equation (36) s t a t e s  t h a t  the  constraints  f o r  per icenter  guidance are  
equivalent t o  cancell ing out only the l a t e r a l  m i s s  a t  tF.  These are  exactly 
the constraints  f o r  example 2, and t h e  resu l t ing  guidance l a w  should therefore 
have the  same form as equation ( 3 2 ) .  

Equation ( 2 9 )  may be subst i tuted for 6r ( tF )  i n  equation (36), and the 
l inear ized equations f o r  the constraint  parameters become : 

Theorem 6 can now be applied t o  obtain the guidance l a w  matrix: 

(b) If a guidance l a w  ex i s t s ,  then (time arguments dropped), 

For t h i s  case A2 i s  generally nonsingular,' whence (a) i s  generally s a t i s f i e d  
and the expressions i n  (b)  can be reduced as f o l l o w s :  

.... . . 

'For Keplerian motion, the o r b i t  r e l a t ive  t o  the  ta rge t  planet i s  hyper­
bo l i c  i n  which case AZ(tF,t) w i l l  be nonsingular except a t  t = tF .  
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where 

From these, t he  guidance l a w  matrix becomes, as i n  equations ( 3 2 ) ;  

@-le 4: Fixed-landing-site guidance (ref. 5) I - This guidance l a w  has 
been applied i n  s tudies  of  t he  re turn  phase of the l u n a r  mission. The primary 
objective of guidance i n  this phase i s  t o  &e a safe entry and, if  possible,  
t o  land at a f ixed  landing s i te .  Fixed-time-of-arrival guidance had been used 
i n  previous studies,  with intercept ion of the reference o rb i t  a t  t i m e  t F  
corresponding t o  vacuum perigee on the reference o rb i t .  Although adequate f o r  
the range of i n i t i a l  e r ro r s  studied i n  reference 5, the FTA guidance l a w  does 
not exp l i c i t l y  recognize the  objectives of the midcourse guidance and f o r  com­
parison the fixed-landing-site guidance l a w  w a s  derived t o  s a t i s f y  the 
constraints  : 

(a) 	 Vacuum perigee a l t i t ude  i s  f ixed  a t  the  value of the center of the  
safe en t ry  corr idor .  

(b) 	 The vehicle lands at a geographically f ixed  landing s i t e  without 
crossrange maneuvering during the  en t ry  f l i g h t .  

The second constraint  i s  adopted i n  view of the  l imited crossrange maneuvering 
capabi l i ty  of  Apollo-class vehicles,  compared t o  the  downrange maneuver 
capab ility . 

The guidance l a w  matrix w i l l  be determined by defining the  sa t i s fac tory  
deviation s t a t e s  a t  any t i m e  t and applying theorem 1. The state deviations 
at t are  defined by t h e i r  corresponding deviations a t  t F  f r o m  equation (1): 

6X(t ) = A( t,tF )  6X(tF )  

The deviations a t  t ;~ ,i n  turn,  can be defined by deviations i n  vacuum perigee 
posit ion,  velocity,  and time; t h a t  is ,  
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To a f i r s t -order  approximation 

where the  subscript ,  0 ,  refers t o  values on the reference o rb i t .  From these 
r e su l t s ,  we have the  6 x 7 matrix: 

The previous equations have t ransfer red  the  problem of defining the satis­
fac tory  deviation s t a t e s ,  6xs( t ) ,  i n to  one of f inding perigee deviations, �5FF, 
6Tp, Etp, which s a t i s f y  the  constraints .  These a re  obtained as f o l l o w s :  L e t  
u, v, E be u n i t  vectors i n  the  direct ion of vacuum perigee posit ion,  velocity,  
and t h e  normal t o  the  o r b i t a l  plane. Then 

and E, T, can be given i n  terms of the  landing s i te  location at the  time of 
landing, and entry f l igh t -pa th  parameters by the following transformations t o  
i n e r t i a l  coordinates : 

cos cp s i n  cp 0 

(uvn) = (ELEpII) . s in  cp s i n  AZL cos cp s i n  AZL -COS 

1-sin cp cos kL cos cp cos A ~ L  -s in  

cos DL s i n  RAL -s in  RAL -s in  DL s i n  RAL 

cos DL cos RAL cos RAJ~ -s in  DL s in  RAL 

s i n  DL 0 cos DL 
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Sketch (a)  .- Geometric parameters 
f o r  fixed-landing s i t e  guidance 

The remaining parameters, (p, A7,T, 
perigee t o  landing, and the azimuth-of 

The parameters are  illustrated-in­
sketch (a).  The vectors EL, E, l!J are 
the  direct ions of t he  landing s i t e  and 
l o c a l  E a s t  and North a t  the landing 
s i te ;  t h e i r  components i n  t he  i n e r t i a l  
frame are given by equation (4Oc) and 
are functions of the  landing s i t e  la t i ­
tude, DL, and r igh t  ascension, RAL(tL). 
For a geographically f ixed  landing si te,  
the  second t ransformation i s  a function 
of t he  time of landing only: 

where a, i s  the  ear th ' s  ro ta t ion  rate. 

are the t o t a l  range angle from vacuum 
the plane of the  en t ry  f l i g h t  at the  

landing s i t e  la t i tude .  Note t ha t  i n  the f i r s t  transformation the entry f l i g h t  
motion i s  assumed t o  take place i n  a s ingle  i n e r t i a l  plane and, therefore,  
already contains the constraint  t ha t  no crossrange maneuvering occurs during 
the  entry f l i g h t .  

For a l l  entry f l i g h t s  with entry speed near the escape speed, an approxi­
mate l i nea r  r e l a t ion  between f l i g h t  t i m e  and t o t a l  range angle i s  available:  

t L  - t p  = Plcp + P 2  ( 40e 1 
where PI, p 2  are  constants ( r e f .  5 ) .  

The sa t i s fac tory  perigee conditions are  found from equations (40a) t o  
(40e) by imposing the  constraints  t ha t  i s  f ixed  a t  the value corresponding 
t o  t h e  center of the entry corridor,  qo,rpand t h a t  DL, RArL(tL) correspond t o  
t he  desired landing s i te .  The remaining parameters which may be varied a rb i ­
t r a r i l y  t o  define the  sa t i s fac tory  perigee conditions a re  then V,, cp, AZL,
and t L .  Assuming small deviations i n  these parameters about t h e i r  values on 
the reference o rb i t ,  we obtain the  sa t i s fac tory  deviations i n  vacuum perigee 
conditions from the appropriate derivatives of equations (ma) t o  ( b e )  



where c 

s i n  y0Ti arpoKxi7 

-vpo cos cp0K av KkT 
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where E, 7, E are now unit vectors taken on the  reference o r b i t  and the  
symbol, x, indicates  the  vector cross product. Finally,  equations (l), (32),
(41) are combined t o  give the  sa t i s f ac to ry  deviation s t a t e s  at t: 

Since A(t,tF) 
dimension of S ( t )  

i s  a nonsingular transformation of  the s t a t e  space, then the 
i s  the same as the  rank of J r ,  which can be shown t o  be 

four. Hence, the  four-columns of A(t,tF)$ fo rm a Sas i s  of S ( t )  and theo­
r e m  1 can be applied d i rec t ly .  P a r t i t i o n  A(t, tF) as i n  equation (6) ;  then 

(i) G ( t )  e x i s t s  IFF rank [AI AzIJr = 3 (434  

Assuming tha t  (43a) i s  sa t i s f i ed ,  l e t  W be any three independent columns of 
[Al A2]$ and V the  corresponding columns of [& A4]$. Further, l e t  Fa, T4 
be the remaining column of these two matrices, respectively.  Then 

(ii) G l ( t )  = - G Z ( t ) V W - l  

G Z ( t )  = -I+ ETT 
-where u is  a un i t  vector i n  the  direct ion of 74 - Vw-lF4. 

These r e su l t s  are not i n  a sa t i s fac tory  f i n a l  form, but  fur ther  discussion 
i s  beyond the  scope of t h i s  paper. 

The guidance l a w s  i n  the  c l a s s  for which S ( t )  is  five-dimensional r e s u l t  
from imposing a s ingle  sca la r  constraint  on the vehicle motion. For instance, 
i n  example 3, if the constraint  i s  reduced t o  obtaining the desired per icenter  
radius without any adjustment of  the  plane of motion, the l inear ized guidance 
constraints  be come 



f o r  which the guidance l a w  matrix becomes (algebra omitted): 

--TG Z ( t )  = -SS 

where 

After the  f i rs t  correction, the corrected o rb i t  tends t o  diverge from the  
reference o r b i t  because the  deviation of the  ac tua l  o r b i t a l  plane f r o m  the 
reference plane of motion i s  preserved; consequently, the  l inear ized equation 
f o r  $8Fp becomes a poor approximation later i n  the f l i g h t .  This d i f f i cu l ty  
i s  rel ieved when equations (37) define the  guidance l a w  matrix. 

CONCLUDING REMARKS 

T h i s  paper has investigated relat ionships  among some of the bas ic  notions 
of  the l inear ized  theory of midcourse guidance i n  space missions; the  satis­
fac to ry  o rb i t s ,  l i nea r  impulsive guidance l a w s ,  and guidance constraints .  

A sa t i s fac tory  o r b i t  i s  one t h a t  s a t i s f i e s  the  mission constraints  on 
o r b i t a l  motion; the s e t  of such o rb i t s  i s  f ixed  f o r  a mission, and the  corres­
ponding s e t  of  s t a t e s  at any time, t, i s  a subset of the  s t a t e  space ca l led  the 
sa t i s fac tory  s t a t e s .  The guidance process i s  one of correcting the current 
s t a t e  of the  vehicle t o  a sa t i s fac tory  s t a t e  by means of a change of veloci ty .  

The guidance l a w  i s  the  ru l e  t h a t  spec i f ies  t he  veloci ty  correction, Ax, 
t ha t  should be made i n  order t o  correct  the vehicle s t a t e ,  X ( t ) ,  t o  a satis­
fac tory  s t a t e  : 

AX = G ( X ( t ) )  

A simple c lass  of such laws,-termed l inea r  impulsive guidance l a w s ,  w a s  studied 
i n  t h i s  paper. These guidance l a w s  y ie ld  veloci ty  corrections tha t  are  l i nea r  
functions of the state deviation from the reference state, and 'are defined.on 
the  e n t i r e  state space: 

Ax = G ( t ) x ( t )  

where G ( t )  i s  the  matrix of the  guidance l a w .  In t h e  study of  midcourse 
guidance i n  space missions l i nea r  impulsive guidance l a w s  arise when the m i s ­
sion imposes three or fewer constraints  on the  vehicle o r b i t a l  motion, and when 
the  assumptions are made t h a t  veloci ty  corrections are impulsive and t h e  o r b i t s  
of i n t e r e s t  are su f f i c i en t ly  close t o  a reference sa t i s fac tory  o r b i t  t o  allow 
the  equations of motion t o  be l inear ized  about the  reference o rb i t .  



It w a s  demonstrated t h a t  l i nea r  impulsive guidance l a w s  can be defined 
from the sa t i s f ac to ry  states ( the  converse i s  also true).  Linear impulsive 
guidance l a w s  occur whenever S ( t )  i s  a three- ,  four-, f ive- ,  or, t r i v i a l l y ,  
six-dimensional l i nea r  vector subspace of  the deviation state space such tha t  
there  i s  a t  l e a s t  one sa t i s fac tory  state corresponding t o  every posi t ion devia­
t i o n  (theorem 2 ) .  I n  t h i s  case the  guidance l a w  matrix can be given f rom any 
s e t  of bas i s  elements of the sa t i s fac tory  s t a t e s  (theorem 1). The guidance l a w  
matrix corresponding to a given s e t  of s a t i s f ac to ry  states i s  unique when S ( t )  
i s  three-dimensional, and otherwise becomes unique i f  the  minimum veloc i ty  cor­
rect ion i s  specified.  Theorem 1 shows t h a t  the  guidance l a w  matrix has several  
properties of form which depend only on the  dimension of S ( t ) ;  i f  S ( t )  i s  
n-dimensional, then G 2 (  t )  i s  a ref lection-pro ject ion matrix projecting t o  a 
(6-n) -dimensional space which i s  a l s o  the range space of  G l ( t ) .  

Some time-dependent propert ies  of the guidance l a w  matrix were considered. 
Since the  set of s a t i s f ac to ry  o r b i t s  i s  f ixed,  the  sa t i s fac tory  states at t w o  
d i f fe ren t  times i n  a mission are re la ted  by a nonsingular transformation 
(eq.  ( 5 ) ) .  Consequently, S ( t )  has a t i m e  invariant  dimension, and f o r  those 
times at which the guidance l a w  exists, the dimension dependent propert ies  of 
form of  G ( t )  are a l s o  invariant .  A propagation formula r e l a t ing  the  guidance 
l a w  matrix a t  two d i f fe ren t  t i m e s  i n  t he  mission w a s  a l s o  derived. 

It w a s  demonstrated t h a t  the  sa t i s fac tory  states and the guidance l a w  can 
be defined from the guidance constraints .  I n  pract ice ,  a mission requires t h a t  
the  vehicle motion s a t i s f y  various constraints .  If these are  expressed i n  
terms o f  independent o r b i t a l  parameters 

*j = aj’ 
j = l , .  . . , m  

where a j  are the specif ied values and m i s  the number of constraints,  then 
the  sa t i s fac tory  o r b i t s  are defined as all o r b i t s  t ha t  s a t i s f y  these con­
s t ra in ts .  If {pl,  . . ., pJ are  completed t o  a s e t  of six independent 
o r b i t a l  parameters and a sa t i s fac tory  reference o r b i t  i s  selected,  then a bas i s  
of the sa t i s fac tory  s t a t e s ,  S ( t ) ,  i s  given by the derivatives:  

J 

where the derivatives a re  evaluated on the  reference o r b i t .  Thus, theorem 1 
can be applied t o  define the  existence conditions and the  guidance l a w  matrix 
i n  terms of t h i s  bas i s  (theorem 4 ) .  

Finally,  an a l t e rna te  construction of the guidance l a w  matrix i s  given 
from the constraints  by considering the  conditions f o r  which a veloci ty  correc­
t i o n  w i l l  s a t i s f y  the  constraints .  If the  constraint  parameters are expressed 
i n  terms of m independent o r b i t a l  parameters and a reference o rb i t  i s  
selected, then f o r  all o r b i t s  near the reference orb i t ,  the  deviations of the  
constraint  parameters are r e l a t ed  t o  the  s t a t e  deviations by the ( l inear ized)  
equation : 

6p = A(t)6F( t )  -I-B(t)GT(t) 
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A correction i s  sa id  t o  exist i f  f o r  every state, 6x, a veloci ty  change, AT, 
can be found t o  s a t i s f y  the  constraint  equations: 

0 = A(t)8F + B(t ) (6F -I-AT) 

These are m-inhomogeneous l i nea r  equations f o r  which an existence condition 
(theorem 5) and the  general solut ion f o r  AT (eq.  (24) )  are readi ly  given. A 
l i n e a r  impulsive guidance l a w  m a t r i x  can then be given f r o m  the  general solu­
t i o n  (theorem 6 ) .  

The constructions of theorems 4 and 6 are  d i f fe ren t ;  theorem 4 gives G ( t )
i n  terms of the derivatives,  ax( t ) /ap j ,  while theorem 6 uses the derivatives 
a p d a x  and theorem 6 w i l l  usual ly  be eas i e r  t o  apply i n  spec i f ic  midcourse 
guidance problems. Nevertheless, the  t w o  r e s u l t s  are  equivalent. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Ca l i f .  , Dec. 8 7  1-96? 
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APPENDIX A 

PROOF O F  THEORESI 1 

The r e su l t s  quoted i n  theorem 1 are included i n  the  proof of the  following 
abbreviated statement. 

Theorem: If S ( t )  i s  an n-dimensional subspace of N(t), 
n = 3, 4, 5, 6 ,  and ~1= (Fl,?l), . . ., sn = (FnjTn) are n 
independent states i n  S ( t )  such t h a t  Fl, 5 5 ,  F3 are independent, 
then a l i nea r  impulsive guidance l a w  exists. 

By hypothesis, S ( t )  can be a three-,  four-,  five-, or, t r i v i a l l y ,  six-
dimensional subspace of N ( t )  and these cases w i l l  be t rea ted  separately 
below. 

Case a: n = 3 

L e t  sl, s2, s3 be three independent states i n  S ( t )  

-and assume rl, F2, F3 are independent vectors.  Next, define W and V t o  be-3 x 3 matrices whose columns are rl, F2, F3 and 71, 72, 73, respectively; note 
t h a t  W i s  nonsingular since i t s  colwnns a re  independent. 

L e t  (6F,68) be any state deviation. To correct  t h i s  s t a t e  t o  a satis­
fac tory  state f i rs t  determine the sa t i s f ac to ry  s t a t e  ( s )which has the  posi t ion 
deviation 6F;t h a t  i s ,  determine a l l  those states (6F,6TS) t ha t  are l i nea r  
combinations of  the  form 

where the  sca la rs  a i  are chosen such tha t  

6 r  = alF1 + a2F' -I- a3r3 = w a2(3 
The constants of combination have a unique solution which i s  obtained by 
invert ing equation (A2)  : 

(i:) = w-%F 

The corresponding veloci ty  deviation on the sa t i s fac tory  o rb i t  which passes 
through 67 is ,  from equation (Al): 
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or  

The vector, 6ss, depends uniquely on 6F, and there  i s  exactly one sa t i s fac tory  
s t a t e  (6F,6Vs) corresponding t o  each posi t ion deviation, 67. The union of 
a l l  such s t a t e s  is: 

~ ( t )= f x ( t >  = (~F,vw-’G);6~ arb i t ra ry]  (A41 

t he  veloci ty  change required t o  correct  the  a rb i t r a ry  state (6F,6v) t o  t he  
sa t i s fac tory  state (E,8TS) i s  then 

As = sss - ss= vw-18F- 67 (A51 

and the guidance l a w  matrix can now be wri t ten as:  

G l ( t )  = VW-l 

G 2 ( t )  = -I I 
The guidance l a w  obtained spec i f ies  a change of s t a t e  t o  a sa t i s fac tory  s t a t e  
f o r  every a rb i t r a ry  s t a t e  i n  N ( t )  by means of a unique impulsive veloci ty  
correction l i nea r ly  r e l a t ed  t o  the o r ig ina l  state. Further, no correction i s  
made i f  the  o r ig ina l  s t a t e  i s  sa t i s fac tory .  I n  short ,  equation ( A 5 )  s a t i s f i e s  
the def ini t ion of a l inear  impulsive guidance l a w .  

Case b: n = 4 

Let s1, s2, s3, s4 be any bas i s  of S(t) and assume t h a t  71, F2, F3 
are  independent. Define the 3 x 3 matrices, V, W as above. 

Next, l e t  (6r,67) be any s t a t e  i n  N ( t )  and determine a l l  sa t i s fac tory  
states corresponding t o  67;  t ha t  is, determine a l l  l inear  combinations 

(A7 

such t h a t  

o r  
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The solut ion of (A8) i s  not unique, bu t  al, a2, a3 can be given i n  terms of 
the  m b i t r m y  parameter, a4, by invert ing equation (A8) : 

= W-l6F - a4W-lF4; a azbi t ra ry  

The corresponding veloci ty  deviations on the sa t i s f ac to ry  o r b i t s  which pass 
through 6F are,  from equation (A7): 

The vector i n  brackets cannot be zero, since otherwise we  obtain the  conse­
quence tha t  s4 i s  a l i nea r  combination of sl, s2, i n  contradiction t o  
the  hypothesis t ha t  SI, . . ., sq were i n d e ~ e n d e n t . ‘ ~Since the vector i n  
brackets i s  nonzero, it may be replaced by a u n i t  vector i n  the  same d i rec t ion  
and, since a4 i s  a rb i t ra ry ,  6Ts can now be rewri t ten as 

8Ts = VW-%F + aU; a a rb i t r a ry  (A9) 
where 

u = (v4 - VW-1r4,/1., - Vw-’.,l 

I n  t h i s  case there  are  a r b i t r a r i l y  many sa t i s fac tory  s t a t e s  corresponding t o  
each posi t ion deviation, 67. The union of  a l l  such s t a t e s  i s  then 

S ( t )  = { x ( t )  = (6F,W-16F + aU); 6F,a arbi t rary]  (A101 
The veloci ty  change required t o  correct  the  state (6FY6T)t o  a sa t i s fac tory  
state i s :  

A 7  = 67, - 63 = VW -16 r  - + aU - ST; a arbitrary 

Since a i s  a rb i t r a ry  i n  t h i s  r e su l t ,  the  ve loc i ty  correction i s  not uniquely 
specif ied as a function of  the s t a t e  alone, and a condition tha t  prgperly spec­
i f i e s  the  value of a must be adopted. I n  equation (A9) a i s  a rb i t r a ry  
and, therefore,  a sa t i s f ac to ry  s t a t e  i s  achieved independent of the  
E-component of the f i n a l  velocity.  Equivalently, the mission constraints  are  
independent of the  ve loc i ty  deviation i n  the direct ion Ti. Consequently, it i s  

’If 74 - VW-lF4 i s  zero, then the  s t a t e  s4 can be given as 

s4 = @) = (9w-%4 

That is, s4 would be a l i nea r  combination of sl, s2, s3 with the  three 
elements of the  vector W-lF4 as the  constants of combination. 
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poin t less  t o  make any change i n  the u-component of veloci ty  deviation. Assum­
ing t h a t  no such change occurs, a must s a t i s f y  the condition2 

-T-­o = u n v  
f r o m  which 

a = $(-vw-%F + ST) 

This gives the  r e s u l t  

Ai? = (I - iTlF)VW-%F - (I - E$)Si? (All) 

Equation (All) s a t i s f i e s  the  def in i t ion  of a l i nea r  impulsive guidance l a w .  
I t s  corresponding matrix i s  then: 

G l ( t )  = (I - iTi?T)VW-l 

--TG 2 ( t )  = -I + uu 

1ii1 = 1 
* 

Case C :  n = 5 

The proof of the theorem w i l l  not be car r ied  out f o r  t h i s  case. The s teps  
require only a minor extension of the proof f o r  Case b above. 

Case d: n = 6 

This i s  the t r i v i a l  case i n  which every state i n  N ( t )  i s  sa t i s fac tory  
and no correction i s  ever made; t h a t  i s ,  

GI = G 2  = 0 
- . . .___-- - - _ - - -_--_ ­

2The condition adopted i s  equivalent t o  choosing a, such tha t  the  magni­
tude of the  veloci ty  correction i s  minimized. This condition i s  not required 
by the  def ini t ion of the  guidance law, but  i s  included as a poss ib i l i t y .  The 
most general choice of a which s a t i s f i e s  the  def in i t ion  i s  the  form: 

a = (uc p)T (-vW-lsF + 67) 
where i s  any vector perpendicular t o  Ti. The corresponding guidance l a w  
m a t r i x  w i l l  then be 

G l ( t )  = -GZ( t )VW-l  

G 2 ( t )  = -I + U(ii + T)T 

This general result points  out t h a t  t he  guidance l a w  corresponding t o  some par­
t i c u l a r  four-dimensional s e t  of sa t i s f ac to ry  s t a t e s  S ( t )  i s  not unique u n t i l  
a condition on a i s  adopted. However, the general r e s u l t  i s  not of any sus­
pected p rac t i ca l  i n t e r e s t  and will not be investigated fur ther .  
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I n  sumazy, theorem 1of the  t e x t  i s  now proved. Equations (A6)  and (A12) 
together with the analogous r e s u l t  for Case c give the  expressions f o r  the  
guidance law matrix quoted i n  the t e x t .  
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UNIQUECISESS OF THF: WIDAJTCE LAW M A R M  

It i s  e a s i l y  shown t h a t  t he  guidance l a w  m a t r i x  f o r  the m i n i m  correction 
t o  a given set of  sa t i s fac tory  states i s  unique. L e t  S ( t )  be a given s e t  of 
s a t i s f ac to ry  s t a t e s  and assume t h a t  the guidance l a w  exists at t .  Let G ( t ) ,  
G*(t)  be two guidance l a w  matrices which s a t i s f y  the  def in i t ion  i n  the  f i r s t  
sect ion and correct  any state i n  N ( t )  t o  a s t a t e  i n  the  given set S ( t )  . 
Since (I f G*)x(t) i s  a sa t i s fac tory  state f o r  any x ( t )  , we have 

G ( I  -I-G*) = 0 

G*(1 f G*) = 0 

o r  

The s e t  S ( t )  may be three-,  four-,  or five-dimensional, and the remainder of 
t h e  proof i s  car r ied  out according t o  the  dimension of  S ( t )  . 

(a) dim [ S ( t ) ]  = 3.  Theorem 1gives G2,  G2* uniquely f o r  t h i s  case, 
as 

G 2  = G2* = -I 

Then, f r o m  the  f i r s t  of equations (Bl) 

G 1  = G l *  

t h a t  i s ,  G = G*, and the guidance l a w  matrix i s  unique. 

(b)~ dim [ S ( t ) ]  = 4. Assuming the condition t h a t  L e  guidance l a w  mini­
mizes the magnitude of the veloci ty  correction, theorem 1 gives G 2 ,  G2* i n  
the form: 

= l l q  = 1 

Inser t ing  these forms i n  the  second equation of (Bl), obtain 

0 = [E* - (E * 7p)E]E*T 
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which, since u, u* are u n i t  vectors, requires  t ha t  
c* = +E 

I n  e i t h e r  case, 
G2  = G2* 

and from t he  f irst  and th i rd  equations of (Bl) 

t h a t  i s ,  G = G*, and the  guidance l a w  matrix i s  unique. 

= 5_. If the  guidance l a w  i s  assumed t o  minimize the 
magnitude of t h e  veloci ty  correction, theorem 1 gives G2,  G2* i n  t he  
form 


G 2  = -I + clclT + U21SizT 

G2* = -1 + U I S l *  T + &S2*T 

where b1,ii2 and Gl*,fi2* are  orthonormal p a i r s  of vectors.  It i s  convenient 
t o  replace these with the  equivalent forms: 

where Gl,7?2,c3 and c1*,7?2*,f&* are orthonormal triads of vectors.  Inser t ing  
these forms i n  the  second of equations (Bl), obtain 

Following the remaining s teps  of Case b above, obtain 

t h a t  i s ,  G = G* and the  guidance l a w  matrix i s  unique. 



PROPERTIES O F  THE MATRIX B 


The matrix, B l ( t , t o ) ,  has been assumed nonsingular and the  matrices of 
equation ( C l )  are defined by equations (6) and (8) of the text. The t i m e  
arguments are dropped i n  the  following. 

B i s  a Nonsingular M a t r i x  

Consider the four  independent s t a t e s  given by the columns of 

where Ti i s  any nonzero vector, I i s  the  3 X 3 iden t i ty  matrix, and G l ( t o )  
i s  the appropriate submatrix f rom the guidance l a w  matrix at to. The s t a t e  
t r ans i t i on  mtrix, A ( t , t o ) ,  i s  never singular, and, hence, the  four columns of  

j rG l ( t 0 )  j=E:zj 
must a l so  be independent. Suppose, next, t h a t  B u  = 0; ’Ghat is ,  from equa­
t ion  (CI) : 

&E = B ~ B ; ~ A ~ E  

Note the  ident i ty ,  I = B1Bi1, from which: 

A ~ C= B~B;’A~T 

Combining these las t  t w o  equations yields:  

t h a t  is, if  �E= 0, then the state (E) can be given as a lineax combination 

of the  columns of G:> where the  constants of combination are the three 

components of the vector Bi‘AZE. However,  t h i s  contradicts  t h e  f a c t  t h a t  the 
four  columns i n  equation ( C 3 )  are independent; consequently, BE cannot be 
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-
zero. Since t h i s  i s  true for every nonzero vector, u, it follows t h a t  B i s  
nonsingular. 

Reduction of B When A2 i s  Nonsingular 

The def in i t ion  of  B1 i n  equations (8) gives 

I = BIBi l  = ( A i  + A2G1)Bi1 

which can be rearranged t o  give 

I - A2GlB1-1 = A1Bl-1 

Assuming A2 i s  nonsingular, pre- and post-multiply by AS1 and &, respec­
t ive ly ,  and obtain 

I - G1BY1A2 = AS1AlBy1A2 (c4) 

Next, rearrange equation ( C l )  after introducing the  def in i t ion  of B2 from 
equations (8) 

B = A 4 [ I  - G l B i l A z ]  - A3Bi1A2 

The r e s u l t  i n  equation ( C 4 )  i s  introduced: 

B = [A&GIA1 - As]B;'A2 (c51 
The expression i n  brackets i n  equation ( C 5 )  i s  [As1] 

T ,which can be proved
f r o m  the  inversion property of the t r ans i t i on  matrix1 (ref.  1) 

When the iden t i ty  I = AA-' i s  car r ied  out i n  t e r m s  of i t s  3 x 3 submatrices, 
t w o  of the  four equations obtained are  

TA2AlT - A1A2 = 0 

A&lT - A3AzT = I 

From the f i rs t  of these it f o l l o w s  tha t  AS1A1 i s  a symmetric matrix. Noting 
t h i s  f a c t  i n  a rearrangement of  the second equation then yields  the indicated 
expression f o r  (AZ1)T. Thus, when A2 i s  nonsingular, B reduces t o  

B = (AS1) TBi1A2 

~~ __  - . .- - -

'This inversion property holds f o r  a l l  canonical transformations. 
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